- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Cao, Zhichao (1)
-
Kim, Dongha (1)
-
Kim, Hokeun (1)
-
Lai, Yingchun (1)
-
Thakkar, Viraj (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Log-Structured Merge-tree-based Key-Value Stores (LSM-KVS) are widely used to support modern, high-performance, data-intensive applications. In recent years, with the trend of deploying and optimizing LSM-KVS from monolith to Disaggregated Storage (DS) setups, the confidentiality of LSM-KVS persistent data (e.g., WAL and SST files) is vulnerable to unauthorized access from insiders and external attackers and must be protected using encryption. Existing solutions lack a high-performance design for encryption in LSM-KVS, often focus on in-memory data protection with overheads of 3.4-32.5x, and lack the scalability and flexibility considerations required in DS deployments. This paper proposes two novel designs to address the challenges of providing robust security for persistent components of LSM-KVS while maintaining high performance in both monolith and DS deployments - a simple and effective instance-level design suitable for monolithic LSM-KVS deployments, andSHIELD,a design that embeds encryption into LSM-KVS components for minimal overhead in both monolithic and DS deployment. We achieve our objective through three contributions: (1) A fine-grained integration of encryption into LSM-KVS write path to minimize performance overhead from exposure-limiting practices like using unique encryption keys per file and regularly re-encrypting using new encryption keys during compaction, (2) Mitigating performance degradation caused by recurring encryption of Write-Ahead Log (WAL) writes by using a buffering solution and (3) Extending confidentiality guarantees to DS by designing a metadata-enabled encryption-key-sharing mechanism and a secure local cache for high scalability and flexibility. We implement both designs on RocksDB, evaluating them in monolithic and DS setups while showcasing an overhead of 0-32% for the instance-level design and 0-36% for SHIELD.more » « lessFree, publicly-accessible full text available June 17, 2026
An official website of the United States government
